Formula Sheet: Math Grade 10 Placement Test to enter Math 172

Metric and Imperial Conversions

Relationships between Imperial Units	Approximate Relationships between Imperial Units and Metric Units	Relationships between Metric Units
$\begin{aligned} & 1 \text { mile }=1760 \text { yards } \\ & 1 \text { mile }=5280 \text { feet } \end{aligned}$	$\begin{aligned} & 1 \mathrm{mile}=1.609 \mathrm{~km} \\ & 1 \mathrm{~km}=0.6214 \text { miles } \end{aligned}$	$1 \mathrm{~km}=1000 \mathrm{~m}$
$\begin{aligned} & 1 \text { yard }=3 \text { feet } \\ & 1 \text { yard }=36 \text { inches } \end{aligned}$	$\begin{aligned} & 1 \text { yard }=0.9144 \mathrm{~m} \\ & 1 \mathrm{~m} \quad=1.094 \mathrm{yd} \end{aligned}$	$1 \mathrm{~m}=100 \mathrm{~cm}$
1 foot $=12$ inches	$\begin{aligned} & 1 \text { foot }=0.3048 \mathrm{~m}=30.48 \mathrm{~cm} \\ & 1 \mathrm{~m}=3.281 \mathrm{ft} \end{aligned}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$
	$\begin{aligned} & 1 \mathrm{inch}=2.54 \mathrm{~cm} \\ & 1 \mathrm{~cm}=0.3937 \mathrm{in} \end{aligned}$	

Area, Surface Area and Volume for standard shapes

Shape	Shape	Volume	Rectangular Area prism

Area: Rectangle $A=l w \quad$ Triangle $A=\frac{1}{2} b h \quad$ Circle $A=\pi r^{2}$

Pythagorean Theorem

a

$$
c^{2}=a^{2}+b^{2}
$$

Trigonometric Ratios

$\sin A=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos A=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan A=\frac{\text { opposite }}{\text { adjacent }}$

Exponent Laws

Exponent Law	
Product of Powers	$x^{m} \times x^{n}=x^{m+n}$
Quotient of Powers	$\frac{x^{m}}{x^{n}}=x^{m-n}$
Power of a Power	$\left(x^{m}\right)^{n}=x^{m \times n}$
Power of a Product	$(x y)^{m}=x^{m} y^{m}$
Power of a Quotient	$\left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}}$
Zero Exponent	$x^{0}=1$
Negative Exponent	$x^{-m}=\frac{1}{x^{m}}$
Fractional Exponent	$x^{\frac{m}{n}}=\sqrt[n]{x^{m}}$ or $(\sqrt[n]{x})^{m}$

Linear Functions

$$
\begin{array}{lll}
\text { slope }=\frac{\text { rise }}{\text { run }} & m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & \text { slope }=\frac{\Delta y}{\Delta x} \\
\text { slope-intercept form } & y=m x+b & \\
\text { general form } & A x+B y+C=0 & \text { slope-point } \\
\text { standard form } & A x+B y=C &
\end{array}
$$

