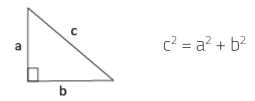
Formula Sheet: Math Grade 10 Placement Test to enter Math 181


Metric and Imperial Conversions

Relationships between Imperial	Approximate Relationships between Imperial Units	Relationships between
Units	and Metric Units	Metric Units
1 mile = 1760 yards	1 mile = 1.609 km	1 km = 1000 m
1 mile = 5280 feet	1 km = 0.6214 miles	
1 yard = 3 feet	1 yard = 0.9144 m	1 m = 100 cm
1 yard = 36 inches	1 m = 1.094 yd	
1 foot = 12 inches	1 foot = 0.3048 m = 30.48 cm	1 cm = 10 mm
	1 m = 3.281 ft	
	1 inch = 2.54 cm	
	1 cm = 0.3937 in	

Area, Surface Area and Volume for standard shapes

Shape	Shape	Volume	Surface Area			
	Rectangular prism	V = lwh	SA = 2(lw + lh + wh) or $SA = 2lw + 2lh + 2wh$			
	Right prism of any base	$V = Bh; B = area \ of \ base$	SA = ph + 2B; p = perimeter of base			
	Right pyramid	$V = \frac{1}{3}lwh$	$SA = \frac{1}{2}(slant hgt)(perimeter of base) + (area of base)$			
$ \qquad $	Cylinder	$V = \pi r^2 h$	$SA = 2\pi r h + 2\pi r^2$			
	Cone	$V = \frac{1}{3}\pi r^2 h$	$SA = \pi r s + \pi r^2$			
	Sphere	$V = \frac{4}{3}\pi r^{3}$ or $V = \frac{1}{6}\pi d^{3}$	$SA = 4\pi r^2$ or $SA = \pi d^2$			
Area: Rectangle $A = lw$ Triangle $A = \frac{1}{2}bh$ Circle $A = \pi r^2$						

Pythagorean Theorem

Trigonometric Ratios

$$\sin A = \frac{opposite}{hypotenuse}$$
 $\cos A = \frac{adjacent}{hypotenuse}$ $\tan A = \frac{opposite}{adjacent}$

Exponent Laws

Exponent Law	Rule
Product of Powers	$x^m \times x^n = x^{m+n}$
Quotient of Powers	$\frac{x^m}{x^n} = x^{m-n}$
Power of a Power	$(x^m)^n = x^{m \times n}$
Power of a Product	$(xy)^m = x^m y^m$
Power of a Quotient	$\left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$
Zero Exponent	$x^0 = 1$
Negative Exponent	$x^{-m} = \frac{1}{x^m}$
Fractional Exponent	$x^{\frac{m}{n}} = \sqrt[n]{x^m} or \left(\sqrt[n]{x}\right)^m$

Linear Functions

$$slope = \frac{rise}{run}$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $slope = \frac{\Delta y}{\Delta x}$

slope-intercept form	y = mx + b		
general form	Ax + By + C = 0	slope-point form	$(y-y_1)=m(x-x_1)$
standard form	Ax + By = C		